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The reflection and transmission of a gravity wave propagating through a jet-type 
background flow is studied. Only the linear, non-dissipative case is treated, and the 
hydrostatic approximation used in a stratified non-rotating medium. The behaviour 
of the gravity wave in the presence of two or one critical levels is investigated. In  
the first case, i.e. two critical levels, it  is found that for high values of the Richardson 
number the wave is highly attenuated. For sufficiently low values of the Richardson 
number overreflection and overtransmission occur. It is demonstrated that a wave 
generated below the jet and propagating upward takes energy from the mean flow 
at the upper critical level for all values of the Richardson number. The single critical 
level has been studied as a limiting case of two merging critical levels. In this approach 
it is found that the wave is not transmitted and no overreflection can occur. 

1. Introduction 
In a classical paper, Booker & Bretherton (1967) analysed the propagation of an 

internal gravity wave through a height-dependent wind field containing one critical 
level, i.e. a level where the wind velocity equals the horizontal phase velocity of the 
wave. They showed that the transmission of the wave depends only on the value of 
the Richardson number at the critical level. They considered only background flow 
with Richardson number larger than 0.25. Later on, Jones (1968) found that, for low 
values of the Richardson number at the critical level, overreflection, i.e. a reflection 
coefficient larger than 1, occurs. 

These results have been confirmed by various authors and for different background 
flows, e.g. a broken-line profile (Eltayeb & McKenzie 1975) and a hyperbolic-tangent 
profile (van Duin & Kelder 1982). 

Viscosity and thermal conduction were introduced by Hazel (1967). He showed that 
for values of the Richardson number larger than 0.25 a large amount of wave energy 
is lost near the critical level. The transmission coefficient is the same as found by 
Booker & Bretherton in the dissipationless model. 

Geller, Tanaka & Fritts (1975) and Fritts & Geller (1976) studied the instability 
in the vicinity of the critical level. They found that viscosity and heat conduction 
can have a strongly stabilizing role. A numerical model was used by Fritts (1978,1982) 
to compare the effects of viscosity, time dependence and nonlinear interaction:Time 
dependence is found to play only a minor role in stabilizing the critical level. 
Nonlinear effects can give rise to higher harmonics of the forcing wave, which develop 
large amplitudes near the critical level when viscous effects are small. 
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A nonlinear non-dissipative treatment was given by Brown & Stewartson (1980, 
1982a, b) .  They showed that for large values of the Richardson number the linear 
model is valid up to a certain time inversely proportional to the wave amplitude. After 
that time, the reflection and transmission coefficients change. Another very different 
approach to the nonlinear stationary problem was given by Teitelbaum & Sidi (1979). 
They showed that a contact discontinuity appears below the critical level in the 
absence of dissipative phenomena. 

To summarize : nonlinearities might change the results of linear models to an extent 
that is not well understood either theoretically or experimentally. In agreement with 
Lindzen (1973), we believe that, if dissipative damping occurs before amplitudes 
have grown to the point where nonlinear effects become important, the linear 
approximation is a good one. 

The problem of one critical level has been extensively treated by Rosenthal & 
Lindzen (1983a, b )  and Lindzen & Rosenthal (1983) with regard to instabilities and 
the relation between instabilities and overreflection. Grimshaw (1980) included 
rotation and electrical conductibility in the linear and inviscid problem of one critical 
level. Although he refers to the problem of two or more critical levels, he does not 
study it. 

Propagation through background flows containing more than one critical level has 
attracted little interest. Drazin, Zaturska & Banks (1979) have done a calculation 
for a flow containing two critical levels. They modelled the flow by a broken-line 
profile. They showed that for large values of the Richardson number the transmission 
coefficient equals that of two independent critical levels having the same value of the 
Richardson number. 

In this paper propagation through two critical levels in a jet-type background flow 
is studied analytically and numerically. 

As the mathematical treatment is more difficult than in the case of one critical level, 
we treat only the linear non-dissipative case. 

First, we have taken a symmetric jet-type background flow. This case can be solved 
analytically. The reflection and transmission coefficients are determined. The influence 
of the distances between the two critical levels is considered. Also, various values of 
the Richardson number are taken. The reflection and transmission coefficients are 
also calculated using a numerical approach, which gives the same results as the 
analytical one. 

The case of an asymmetric flow is also considered in the numerical approach. 
Finally the limit of two critical levels approaching each other is considered in order 

to model the case of a single critical level. 

2. The governing equations 
We consider a compressible and stratified fluid. Viscosity and thermal conduction 

are assumed to be negligible. The horizontal background flow is only height-dependent. 
Perturbations t o  the zeroth-order state are assumed to be small to allow the 
linearization of the equations of conservation of mass, momentum and entropy. On 
this set of differential equations the hydrostatic approximation is applied. This 
assumption is valid if the vertical scale of motions is much smaller than the horizontal 
scale (Orlanski 1981; Gill 1982). As we restrict this study to gravity waves with 
periods long compared with the Brunt-Vaisala period, the hydrostatic approximation 
can be used. Furthermore, owing to the behaviour of waves near the critical level, 
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where the ratio of the vertical to the horizontal scale tends to zero, the hydrostatic 
approximation becomes more and more justified. 

We start with the linearized equations (cf. Holton 1975): 

au -au au aq5 -+ u-+-w+- = 0, 
at ax a2 ax 

azq5 - a2q5 -+ U-+Ww = 0,  
a taz  axaZ 

211 1 c‘ -+--@w) = 0,  
ax pa2 

where z = - H In (p/po), H is the scale height (assumed to be constant), = r ( z )  is 
the background flow, w is the vertical velocity perturbation, u is the horizontal 
velocity perturbation, q5 is the geopotential perturbation, N is the BrunbViiisalli 
frequency, p is the pressure perturbation and po a reference pressure level. 

We look for normal-mode solutions, i.e. solutions with x-  and t-dependence of the 
form exp [ i (d  - k x ) ] ,  where (r is the frequency and k the horizontal wavenumber of 
the wave. 

If the set of equations (2.1)-(2.3) is solved for the z-dependence of q5, the following 
equation is obtained : 

d2q5 1 dq5 P k 2  
dz2 H dz Q2 

+-q5 = 0, 

where 52 = (r- k v  is the Doppler-shifted frequency. 
Inserting A(%) = e-z’2H # ( z )  into (2.4) leads to 

!$+[~p-m] P k 2  
1 A = 0. 

Equation (2.5) contains no derivatives of the background flow. Hence, applying 
the hydrostatic approximation and using as vertical coordinate log pressure gives for 
the geopotential perturbation a quite simple equation. 

3. The solutions 
The background flow D(z) is taken to be of the form 

-_ 
UO 

1 + z2/D2 

- 
U(Z) = 

This profile represents a symmetric jet-type flow. 
If the horizontal phase velocity of the wave is smaller than Uo the wave encounters 

After introducing the independent variable y = z/Dd,  where d = ( U o / c -  1): and 
two critical levels in the flow. This case will be examined first. 

c = ( r / k  is the horizontal phase velocity of the wave, (2.5) becomes 

Furthermore, if we define the function B(y) = (y2- l)-: A(y), the equation for B is 
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(3.4) 1 where A = -2- D2N2 U, , y2 = D2d"--&), 
c3 

D2N2 UZ, 
and p 2  = 1 -4Ri,, withRi, = ~ 

4c4d2 

where 

and 

(3.4) 1 A = -2- D2N2 U, , y2 = D2d"--&), 
c3 

p 2  = 1 -4Ri,, 
D2N2 UZ, 

withRi, = ~ 

4c4d2 

The Richardson number Ri is defined as Ri = N2/(dn/dz)2. It is easy to verify that 
Ri, is the Richardson number at the critical level. 

Equation (3.3) is known as the differential equation of spheroidal wave functions. 
Its properties and solutions can be found in Meixner & Schafke (1954) (hereinafter 
referred to as MS) and Erdblyi et al. (1953). 

1 are 
regular, whereas the one a t  00 is an irregular singularity. The parameter p is called 
the order of the wave function. 

The spheroidal wave equation (3.3) has different solutions. As we are considering 
a reflection and transmission problem, we need solutions that are asymptotically 
approximated by plane waves. 

The solutions with these properties are S;(394)(y, y). They can be represented by 
convergent series for IyI > 1 by 

The equation has three singular points at  y = f 1 and co. The points 

where A;(y2) = Z,"---m ( -  l)n a;, 2,(y2) and q 2 2 r  are the spherical Hankel functions. 
The parameter u is called the characteristic exponent of the spheroidal differential 
equation, and is a function of A ,  p and y2. 

It is possible to expand A in a power series in y2, with coefficients depending on 
p and u (MS) as 

... 

It is obvious, and will be useful below, that 

h;(O) = v(u+ 1 ) .  (3.7) 

Properties of these solutions and the following can be found in MS. 
Other solutions we need are Ps;(y, y2) and Q$(y, y2). They may be represented in 

the following forms : 

where P$ and QC are the Legendre functions of the first and second kind respectively. 
The series in (3.8) converge everywhere, with the possible exceptions k 1 and 00. 

The asymptotic behaviour of Sr(3)(y, y) as y-f 00 is 

for x+e < arg(yy) < ~ K - E ,  E > 0. 
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For St(4)(y, y )  the asymptotic form is 

23 1 

for - ~ A + E  < arg(yy) < A--8, E > 0.  
From (3.9) and (3.10) it follows that 

exp { i[lz - $ ( u  + 1 )  A]} A ( z )  x as z+co  
Y 

(3.1 1)  

for larg (k)l < A ,  where 1 = [ P / c 2  - 1/4P]: is the vertical wavenumber without 
mean flow. 

Since A(z )  = e--2/2H $(z) ,  $ tends exponentially to infinity as z+ 03. This is a 
consequence of density stratification. Nevertheless, it must be taken into account that 
the wavelike form (3.11) is a good solution where the mean-flow velocity becomes 
negligible with respect to the horizontal phase velocity of the wave. Thus, in the 
problem at hand, the mathematical limit z+ co means u+O. 

The plus and minus signs in (3.11) correspond to the solutions S$3) and Sf4) 
respectively. 

The vertical wave-energy flux, at least when the mean background flow is zero, 
may be written as 

F, = po$Z = +po Re ($w*), (3.12) 

where the overbar refers to the average over one cycle of the wave and po is the 
basic-state density. 

Equation (2.2), with the temporal and horizontal dependence used here, gives 

With (3.13), the vertical wave energy flux (3.10) becomes 

(3.13) 

(3.14) 

and, with the asymptotic form (3.9), 

(3.15) 
521 

Fw = *POW' 

where the plus and minus signs correspond to the plus and minus signs in (3.11). Thus 
in the upper half-space, S$3) corresponds to an upward-, and S$4) to a downward-, 
propagating wave. 

4. The reflection and transmission coefficients 
Suppose there is a source emitting waves at - co . For z+ + 00 we must only have 

an upward-propagating wave. This boundary condition may be fulfilled as seen at 
the end of $3  by St(3)(y, y) .  It is then necessary to find the analytical continuation 
for values of z+ - 00. The physically meaningful path of analytical continuation is 
found by adding a small dissipation term to (2.1) and (2.2) (Booker & Bretherton 
1967; Baldwin & Roberts 1970). 

We can parametrize a small dissipation in terms of linear friction (Rayleigh 
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FIGURE 1. Complex y-plane showing the two equivalent paths for analytical continuation of the 
spheroidal wave function: ---, direct path; - , indirect path used in our calculation; *, 
singularities shifted as a consequence of the addition of a small dissipation. 

friction) and linear thermal damping (Newtonian cooling). This leads to a complex 
horizontal phase velocity c-is. If terms of higher order than E are neglected, the 
singularities in (3.3) are at  y = +_u, where 

u= l+ i s ’ ,  w i t h s ’ = ~ e < l .  
2c2d2 

A Frobenius expansion near y = a starts with the terms 

where p’2= l-4Ric(l+?). 

If E = 0 there is a branch point at  y = 1. If E > 0, as is the case when we consider 
small dissipation, then, as y - 1 decreases from positive values that are large compared 
with E‘ to negative values, the argument of y- 1 -id changes continuously from 0 
to --K. 

Near y = -a the first term of a Frobenius expansion is [y + (1 +is’)] *$’. In this 
case, as y+ 1 decreases from positive to negative values, the argument of y + 1 + is’ 
changes continuously from 0 to 7c. 

The above analysis shows that the connection path can be one of the equivalent 
paths shown in figure 1. We followed the path indicated by a solid line, allowing us 
to use known properties of the solutions, as we shall see later. 

The Sfay4) are only defined for IyI > 1. First we have to extend the functions into 
the unit circle. This may be done with the following relations: 

where 
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and Vt is a constant, which for small values of y2 can be approximated by 

The connection path can be split into two parts. First we turn around y = 1 through 
-2x. In  MS i t  is proved that 

Ps; [I + (y- 1) e-Zia] = &/lXi Ps;(y);  (4.3 1 
accordingly 

Next we turn around y = 0 through +x, which gives 
hl 

Qs;(y e’“) = e-i(v+l)n Q&;(y). (4.5) 

Inserting (4.5) into (4.4) gives 

(4.6) 
N cospx - . sin (v - p )  x r ( p  - v )  ry 

eim Os”_,-,(y). Qs;(y) - cos VIC r ( v + p  + 1)  
Qs$( -y) = -- 

cos vx 

In the same way, an expression for QS”_,_,( - y) may be derived. 
With the help of (4.1), we can go back to Sc(3,4), and the result is 

with 

and 

where 

and 

2 cospx sinyII+i[V+ e-ivn-V- eim] 
2i cos2 vx P =  

, (4.9) 
1 i e-ivn[2 cos - V+ e-zivn - V-  ezim 

2i cos2 vx !I= 

(4.10) 

(4.11) 

If we let y+oo in (4.7) we obtain, with the asymptotic forms (3.9) and (3.10), a 

If we take into account that for negative y, Sf4) represents the incident wave and 
relation between plane waves. 

Sf3) the reflected one, the coefficients of reflection R and transmission T become 

and 

P R = -  
elvn q 

1 T = -  
elvn q ’ 

(4.12) 

(4.13) 

with p and q defined above. 
The parameters are p, y and A, but the number of parameters may be reduced if 

we consider that the horizontal phase velocity of the wave c is much smaller than 
the sound velocity. In the atmosphere the sound velocity is V,  x 4N2H2, and with 
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FIGURE 2. Variation of the reflection coefficient IRI as a function of S = cf U,, for three different 
values of the minimum Richardson number of the mean flow: -, Rim = 0.143; ---, 0.1 ; . . . , 
0.07. 
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this approximation it is possible to write 

J pa= 1 -  2J 
A = - ,  s3 s3(1 -sy 

(4.14) 
N2D2 c where J = -  q ,  s=- 

UO' 
Note that this approximation, which can be interpreted as the incompressible-fluid 
approximation ( H - t  a), has not been used elsewhere in this study. It is only adopted 
to simplify the presentation and interpretation. 

Thus only two parameters are involved: J and the ratio S between the phase 
velocity and the maximum velocity of the background flow. 

Another useful parameter is the minimum Richardson number of the flow Rim, 
which corresponds to S = 0.75 and is equal to ($)3 J. 

In figures 2 and 3 the variations of IRI and I5'l are indicated as functions of S for 
some values of Rim. Note that the values of S for which the maxima of IRI and I!ll 
are reached are greater than 0.75, i.e. Ri, > Rim. 

Overreflection starts with Rim = 0.143, while a t  the critical level Ri, = 0.169. 
Lower values are found for one critical level. Jones (1968) calculated Ri = 0.113 ; 
Eltayeb & McKenzie (1975) obtained 0.115 and van Duin & Kelder (1982) 0.132. The 
background mean flow considered by Jones and Eltayeb & McKenzie was formed by 
matching constant shear layers, which implies that the Richardson number is 
constant in each layer. The value given by van Duin & Kelder for the hyperbolic- 
tangent profile corresponds to Ri, = Rim. The higher value found here can be 
explained by the fact that, as we shall show, the upper critical level acts as a source 
of wave energy. 

+ 0 (3.12) does not represent the total vertical energy flux. 
Another term which represents the advection by wave field of the kinetic energy of 
the mean flow is needed (Hines & Reddy 1967; Lindzen 1973), and this leads to 

In regions where 

FE = po$G+po OZZ. (4.15) 

In fact, what we need is a quantity whose flux is conserved across the jet except 
at critical levels. We could as well use other quantities such as horizontal wave 
momentum (Eliassen & Palm 1962) or wave action (Bretherton 1969; Andrews & 
McIntyre 1978; Grimshaw 1984). In the present case the flux of these quantities agrees 
with the flux of total energy as defined above up to a multiplicative constant. 

From (3.13) and (2.1), the horizontal perturbation velocity may be written as 

(4.16) 

which allows us to write the vertical energy flux as 

FE = ipo Re [ir$#:]. 

Near the upper critical level, where y- 1 > 0 and Ri, > i, #(y) can be written 

(4.17) 

(4.18) 

where P and Q are complex constants. 
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This last expression used in (4.17) gives 

The analytical continuation of @ for y-  1 < 0 through -n is 

which gives 

(4.19) 

(4.20) 

(4.21) 

If, as expected, there is an upward-propagating wave above the upper critical level, 
FS is positive; then Fg is negative, and the upper critical level acts as a source of 
energy. 

For Ri, c i t  is not possible to prove the same statement, but the numerical 
calculation shows that F; is always smaller than Fi. 

We conclude that the wave is partly reflected and partly transmitted at the lower 
critical level; the transmitted part reaches the upper critical level, and is then 
reflected. The downward energy flux is added to the energy already reflected by the 
lower critical level, and contributes to the total wave reflection. Nevertheless, in order 
to observe overreflection, it is necessary that the wave absorption at the lower critical 
level, if any, remains very small. 

We can anticipate a result obtained by numerical calculation. If the profile that 
gives IRI = 1 (Ri, = 0.169, Rim = 0.143) is modified in its upper part by taking a 
constant mean flow above its maximum, the upper critical level is suppressed. In that 
case the reflection coefficient becomes IRI = 0.91. 

The transmission coefficient depends on Ri, and on the mean shear flow below the 
critical levels. If the mean shear below the critical levels is not very strong the 
transmission coefficient Ifl = exp [ -2x(Ri,-+)i] is consistent with Booker and 
Bretherton's results. If the shear is strong (low value of Rim) even for large values 
of Ri,, Ifl becomes lower than the product of the transmission coefficients because 
the wave is partially reflected below the critical level. As an example, the case 
Rim = Ri, = 5 gives IR1 = 2.9 x and IT1 = 1.29 x lov6. Note that this value of IT1 
corresponds to the product of two separated critical levels. With the same Ri, = 5 ,  
but with Rim = 0.12, the results are IRI = 0.86 and IT1 = 3 x lo-'. 

Comparison of our reflection coefficients with that found by Drazin et al. (1979) 
for the triangular jet shows that our values are much lower. This can be explained 
by the reflection at  the knees of the broken-line profile of Drazin et al. (see e.g. Jones 
1968; Eltayeb & McKenzie 1975). 

5. Numerical calculation and the asymmetric jet 
Equation (3.3) has been solved numerically by the method of Bulrisch & Stoer 

(1966). If we introduce an imaginary component for the frequency (about lo-' of 
the real component) the singularities are shifted off the real axis and integration 
along this axis is possible. We start from large positive values of y with an upward- 
propagating wave - the equation is integrated backwards down to a level below the 
jet at a distance where the solutions are again well approximated by plane waves. 
The solution can be uniquely decomposed into an incident and a reflected wave, and 
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RiE 

0.12 
0.07 
0.12 
0.07 
5 
2 
5 
2 

Rik 

0.12 
0.07 
0.07 
0.12 
5 
2 
2 
5 

IRI 
1.32 
2.11 
1.74 
1.47 

2.64 x 10-3 
3.25 x 
3.26 x 
3.00 x 10-3 

ITI 
0.70 
1.63 
1 .oo 
1 .oo 

1.13 x 
2.45 x 10-4 
1.66 x 10-5 
1.66 x 10-5 

TABLE 1 .  Reflection and transmission coefficients for asymmetric jets with S = 0.86 

so R and T can be determined. The integration step is changed automatically when 
the desired accuracy is not found. For example, the minimum step near the critical 
level can be as low as lo-’, of the total integration path with no more than 500 steps. 

The differences between the numerical and the analytical results are less than 1 % . 
An asymmetric jet can be defined as 

These profiles were also considered numerically. 
In table 1 some calculated values are listed. The values of the Richardson number 

at the lower critical level and at upper critical level of the jet, Ri’, and Ri: 
respectively, have been used as parameters. The calculation was performed with 
S = 0.86. 

Two conclusions can be drawn from table 1 : 
(a)  changes in Ri: modify the reflection coefficient - this proves that part of the 

(b) interchange of Ri’, and Riz changes IRI but leaves Iq invariant. 
reflected wave comes from the upper critical level; 

Both results are consistent with the hypothesis of a wave partially trapped between 
the two critical levels. 

6. One critical level 
When the horizontal phase velocity of the wave equals the maximum of the 

mean-flow velocity there is only one critical level. Mathematically, the singularity 
of (2.5) becomes an irregular singularity. However, when a small dissipation term is 
added the irregular singularity splits into two regular ones. Thus the case of one 
critical level has been reduced to the case of two merging critical levels. 

Let us start with two critical levels and let c+ U,, i.e. S+ 1. From (4.14) it is clear 
that y2+0,  p+ico and A+ -2J. We calculated the values of R and T i n  this limit. 

From Stirling’s formula for gamma functions it follows that 

~ ( , U + U + I )  x e-pp+Y+i(2X)2 (6.1) 

and r(p- u )  x e-pp-”-t ( 2 l c ) z  (6.2) 
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IRI IRI 

1.0 - 

I I I I 

01 0.5 1 .o 1.5 2.0 

FIOUR’P: 4. Variation of the reflection coefficient as a function of the minimum Richardson 
number of the mean flow in the case of two merging critical levels. 

for ,u+ico. From (4.2) it may be inferred that for y+O 

Moreover, if we put p = iM then 

Taking into account that p w i ND/U,d  and y+DEd, we can write 

Vf w -IeMnp 

where 

(6.7) 

(6.10) 

Introducing (6.8) and (6.9) in (4.8) and (4.9) to  calculate p and q, and using these 
results in (4.12) and (4.13), we obtain for the reflection and transmission coefficients 

(6.11) 

(6.12) 
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In the limit S+l,  that is y+0, we can deduce from (3.7) that 

~+-i-!j(1+4A)i w -+-+(l-W);, (6.13) 

which shows that v takes on a finite value in this limit. 
From (6.12) it  is clear that as 841 the transmission coefficient T+O. The wave 

is not transmitted. This result is consistent with Booker & Bretherton’s result, as, for 
S+ 1 ,  Ri, + co. 

Numerical calculation with (6.11) shows that IRI2 < 1 .  
A wave propagating through a jet with two merging critical levels will not be 

Figure 4 shows that IRI decreases with increasing values of Rim. 
overreflected, but only partially reflected and not transmitted. 

7. Conclusion 
This work was motivated by the frequent observations of jet-type background 

winds in the atmosphere and the €act that planetary waves are seen as stationary 
jets by short-period gravity waves. 

In such a background flow a gravity wave can have two critical levels or only one 
with specific characteristics. In this study we have shown that the two critical levels 
do not act independently to determine the behaviour of the travelling wave. In  fact, 
some of the energy transmitted through the lower critical level can be reflected at  
the upper one, which acts as a source of wave energy. Then the downward energy 
flux is added to the energy already reflected at  the lower critical level and can produce 
overreflection, with Ri, higher than in the case of only one critical level. We found 
overreflection with Ri, = 0.169, the critical level located at  S = 0.86. On the other 
hand, even for values of Ri, as low as 0.1, and with Ri, = Rim (S = 0.75), neither 
overreflection nor overtransmission occurs. 

The transmission coefficient is different from the product of the transmission 
coefficients of the two critical levels when 0.25 < Rim < 1 because the wave is 
partially reflected below the critical levels by the strong shear. 

The results found for asymmetric jets show that the upper critical level can affect 
the reflection of the wave. 

The case of a wave having only one critical level at  the maximum of the background 
flow has been solved as the limit of two merging critical levels. In  this case the 
transmission becomes zero and no overreflection can occur. 
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